
iData Entered)

AA fl) TION PAGE RA NTLCIN

12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Comnpiler Validation Summuary Report: ALSYS, 31 Nov 1987 to 31 Nov 1988

AlsyCOMP 027, Version 3.21, Macintosh II Host
and TargEt. 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

AFNOR, Paris, France.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK j
AREA & WORK UNIT NUMBERS

AFNOR, Paris, France.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 31 November 1987
United StatesCDepartment of Defense 13. NUMBER O PAGES
Washingto n, DC 20301-3081 38 p.

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 1b. SECURITY CLASS (of this report)
U NCLI ASSIF IElD

AFNOR, Paris, France. 15a. R LASFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block?20 If different from Report) V

UNCLASSIFIED D I
ELECTE

18. SUPPLEMENTARY NOTES n

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

AlsyCOMP_027, Version 3.21, ALSYS. AFNOR, Macintosh 11 unde~r A/tX. Seed Release 3 3.1 (hlost andI
Target). ACVC 1.9.

DO D "A 1473 -);t inN o~ v iwT;-, i i- 167M.__-. --..

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASZ ' 1.171CD iF TIi' PA, VA~h,),rp'tered)

AVF Control Number AVF-VSR-AFNOR-87-3

Ada* COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 871127A1.09002
ALSYS

AlsyCOMP_-027, Version 3.21
Macintosh II

Completion of On-Site Testing:
31 November, 1987

Prepared by:
AecctcrForAFNOR

NTIS CR~Tour Europe
OTIG TAB F980Cedex 7

U~~ar0 F-92080 Paris la D6fense .

Justifc~

By--.--~ Prepared For:
DistitInn:r; Ada Joint Program Office

United States Department of Defense
A~::~;~ll (~PSWashington, D.C. 20301-3081

Di

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

J

6-

S
S

S

hit

-p

0

+ + + + ++
+ + 0
+ Place NTIS form here +
+ + >1'

++ + + + +++++++++ +++++ +

.;pM.

* V

K

0

it'
4
'I'.

P
S

U'?.

2

ph
9%

* N
* RW~t~~'(~ ~ r %9% P % 5%

Ada* Compiler Validation Summary Report:

Compiler Name: AlsyCONP_027, Version 3.21

Certificate Number: 871127A1.09002

Host: Target:
Macintosh II under Macintosh II under
A/UX A/UX
Seed Release 3.3.1 Seed Release 3.3.1

Testing Completed 31 November, 1987 Using ACVC 1.9

This report has been reviewed and is approved.

AFNOR
Dr Jacqueline Sidi
Tour Europe
Cedex 7
F-92080 Paris la Defense

Ada Validation Office
Dr.John F. Kramer
Institute for Defense Analyses
USA-Alexandria VA 22311

Ada Joint Program Office
Virginia L. Castor
Director
Department of Defense
USA - Washington DC 20301

*Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

3

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the AlsyCOMP.027, Version 3.21, using
Version 1.9 of the Ada* Compiler Validation Capability (ACVC). The
AlsyCOMP 027 is hosted on a Macintosh II operating under A/UX, Seed Release
3.3.1. Programs processed by this compiler may be executed on a Macintosh
II operating under A/UX, Seed Release 3.3.1.

On-site testing ended on 31 November, 1987 at La Celle Saint Cloud,
France, under the direction of the AFNOR (AVF), according to Ada Validation
Organization (AVO) policies and procedures. At the time of testing, version
1.9 of the ACVC comprised 3122 tests of which 25 had been withdrawn. Of the
remaining tests, 221 were determined to be inapplicable to this
implementation. Not all of the inapplicable tests were processed during
testing; 201 executable tests that use floating-point precision exceeding
that supported by the implementation were not processed. Results for
procensed Class A, C, D, and E tests were examined for correct execution.
Compilation listings for Class B tests were analyzed for correct diagnosis
of syntax and semantic errors. Compilation and link results of Class L
tests were analyzed for correct detection of errors. There were 20 of the
processed tests determined to be inapplicable. The remaining 2876 tests
were passed. The results of validation are summarized in the following
table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 500 550 248 166 98 140 327 134 36 234 3 250 2876

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 125 0 0 0 3 0 3 0 0 0 3 221

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 2 25

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

4

...... .SE, LI

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 6

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 7
1.2 USE OF THIS VALIDATION SUMMARY REPORT 7
1.3 REFERENCES 8
1.4 DEFINITION OF TERMS 8
1.5 ACVC TEST CLASSES 9

CHAPTER 2 CONFIGURATION INFORMATION 12

2.1 CONFIGURATION TESTED 12
2.2 IMPLEMENTATION CHARACTERISTICS 13

CHAPTER 3 TEST INFORMATION 18

3.1 TEST RESULTS 18
3.2 SUMMARY OF TEST RESULTS BY CLASS 18
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 19
3.4 WITHDRAWN TESTS 19
3.5 INAPPLICABLE TESTS 19
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS.20
3.7 ADDITIONAL TESTING INFORMATION 21
3.7.1 Prevalidation 21
3.7.2 Test Method 21
3.7.3 Test Site 22

APPENDIX A CONFORMANCE STATEMENT 23

APPENDIX B APPENDIX F OF THE Ada STANDARD 26

APPENDIX C TEST PARAMETERS 33

APPENDIX D WITHDRAWN TESTS 37

5

CHAPTER 1

INTRODUCTION

) This Validation Summary Report (VSR) describes the extent to which a
specific Ada compilei conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
repoits the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard must
be implemented in its entirety, and nothing can be implemented that is not
in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types. Other
differences between compilers result from the characteristics of particular
operating systems, hardware, or implementation strategies. All the
dependencies observed during the process of testing this compiler are given
in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile time,
at link time, and during execution.

6

I.

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any unsupported language constructs required
by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted under the direction of the AVF
according to policies and procedures established by the Ada Validation
Organization (AVO). On-site testing was terminated on 31 November, 1987 at
Alsys at La Celle Saint Cloud, France.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
USA - Washington DC 20301-3081

or from:

AFNOR
Tour Europe
cedex 7
F-92080 Paris la D6fense

71

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
USA - Alexandria VA 22311

1.3 REFERENCES

1 Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Compiler Validation Procedures and guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for establishing procedures
for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to "e Ada Standard.

.

INTRODUCTION

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Language The Language Maintenance panel (LMP) is a committee
Maintenance established by the Ada Board to recommend 'interpretations
Panel and possible changes to the ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity regarding
a particular feature or combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES
Conformity to the Ada Standard is measured using the ACVC. The ACVC

contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors. Class
L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test ispassed if every
illegal construct that it contains is detected by the compiler.

9

JJ

INTRODUCTION

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED, FAILED,
or NOT APPLICABLE message indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set or executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attemped.

I
The text of the tests in the ACYC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate :e
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values --for example, an
illegal file name. A list of the values used for this validation are listed
in Appendix C.

10

INTRODUCTION

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to coqtain an illegal
language construct or an erroneous language construct is withdrawn from the Ile
ACVC and, therefore, is not used in testing a compiler. The tests withdrawn j

at the time of validation are given in Appendix D.

Jb

I

p

N

,p

)1I

4~e

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: AlsyCOMP_027, Version 3.21

ACVC Version: 1.9

Certificate Number: 871127A1.09002

Host Computer:

Machine: Macintosh II

Operating System: A/UX
Seed Release 3.3.1

Memory Size: 8 Mb

Target Computer:

Machine: Macintosh II

Operating System: A/UX
Seed Release 3.3.1

Memory Size: 8 Mb U.

Communications Network: none

ONU.

12S

''* n ll. ., F x P

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests) and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
implementation processes 64 bit integer calculations. (See tests

D4AOO2A, D4AO02B, D4AO04A, and D4AO04B).

Predefined types.

This implementation supports the additional predefined types
SHORT_INTEGER, LONG_INTEGER, and LONG-FLOAT in th package
STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAXINT during compilation, or it may raise
NUMERICERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

Expression evaluation

Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B).

13

NV'

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A).

Apparently NUMERICERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

Apparently NUMERICERROR is raised when a literal operand in a
fixed point comparison or membership test is outside the range of
the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

Rounding

The method used for rounding to integer is apparently round to
even. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round to even.(See test C4AO14A.)

Array types. 2,

An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises NUMERICERROR. (See test
C36003A).

NUMERICERROR is raised when an array type with INTEGER'LAST + 2
components is declared. (See test C36202A.)

NUMERICERROR is raised when an array type with SYSTEM.MAXINT +
2 components is declared. (See test C36202B.)

Pragma pack is not supported. (See tests C52103X, C52104X and
C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINT-ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match array
slice assignments. This implementation raises no exception. (See
test E52103Y.)

14

CONFIGURATION INFORMATION

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the targetts subtype. (See
test C52013A.)

Discriminated types. P

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evahated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINTERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

15

CN

- - - - - - - - - - - -

CONFIGURATION INFORMATION

Enumeration representation clauses for boolean types containing
representational values other than (FALSE =) 0, TRUE =) 1) are
supported. (See tests C35508I..J, C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGESIZE specifications for access types
are supported. (See tests A39005C and C87B62B).

Length clauses with STORAGESIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See tests
A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas

The pragma INLINE is supported for procedures. The pragma INLINE
is supported for functions. (See tests LA3004A, EA3004C, EA3004D,
CA3004E, and CA3004F.)

However the pragma INLINE is not supported for functions when they
are called inside a package specification (see test EA3004D) or
inside a task body (see test LA3004B).

Input/output.

The package SEQUENTIALIO can be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, EE2201D, and EE220lE.)

The package DIRECT_10 can be instantiated with unconstrained array
types and record types with discriminants without defaults. (See
tests AE21OlH, EE2401D and EE240lG.)

Modes INFILE and OUTFILE are supported for SEQUENTIALIO. (See
tests CE2102D and CE2102E.)

Modes INFILE, OUTFILE, and INOUTFILE are supported for
DIRECTIO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIALIO and DIRECTIO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIALIO and DIRECTIO. (See tests CE2106A and CE2106B.)

16

CONFIGURATION INFORMATION

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUTFILE mode, can be
created in OUTFILE mode, and can be created in INFILE mode. (See
test EE3102C.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See tests
CE2107A..D (4 tests) and CE2111D.)

More than one internal file can be associated with each external
file for direct I/O for both reading and writing (See tests
CE2107E..I (5 tests) and CE2111H.)

An external file associated with more than one internal file can
be deleted for SEQUENTIAL_IO, DIRECTIO, and TEXTIO. (See test
CE2110O.)

Temporary sequential files are given names. Temporary direct files
are given names. Temporary files given names are deleted when they
are closed. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1O12A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

17

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

At the time of testing, version 1.9 of the ACVC comprised 3122 tests of
which 25 had been withdrawn. Of the remaining tests, 221 were determined
to be inapplicable to this implementation. Not all of the inapplicable
tests were processed during testing; 201 executable tests that use
floating-point precision exceeding that supported by the implementation
were not processed. Modifications to the code, processing, or grading for
29 tests were required to successfully demonstrate the test objective. (See
section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

S
3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 109 1049 1641 17 15 45 2876

Failed 0 0 0 0 0 0 0

Inapplicable 1 2 214 0 3 1 221

Withdrawn 3 2 19 0 1 0 25

TOTAL 113 1053 1874 17 19 46 3122

18

N-A

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 500 550 248 166 98 140 327 134 36 234 3 250 2876

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 125 0 0 0 3 0 3 0 0 0 3 221

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 2 25

TOTAL 206 586 677 48 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 25 tests were withdrawn from ACVC Version 1.9 at time of this
validation:

B28003A E28005C C34004A C35502P A35902C
C35904A C35AO3E C35A03R C37213H C37313J
C37215C C37215E C37215G C37215H C38102C
C41402A C45614C A74106C C85018B C87BO4B
CC1331B BC3105A ADIA01A CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicalbe for a subsequent
attempt. For this validation attempt, 221 tests were inapplicable for the
reasons indicated:

• C35702A use SHORTFLOAT which is not supported by this
implementation.

. A39005G uses a record representation clause which is not supported
by this compiler.

• C45531M, C45531N, C45532M, and C45532N use fine 48 bit fixed point
base types which are not supported by this compiler.

" C455310, C45531P, C455320, and C45532P use coarse 48 bit fixed
point base types which are not supported by this compiler.

19

TEST INFORMATION

* B86001D and C45231D requires a predefined numeric type other than
those defined by the Ada language in package STANDARD. There is no
such type for this implementation.

C86001F redefines package SYSTEM, but TEXTIO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

" C87B62B applies the attribute 'STORAGESIZE to an access type for
which no STORAGE-SIZE length clause is given. In this case,
STORAGEERROR is raised; the AVO ruled that this behavior is
acceptable, since the interpretation of what value the attribute
should return where no length clause is given is under review.

" BA2001E requires that duplicate names of subunits with a common
ancestor be detected and rejected at compile time. This
implementation detects the error at link time, and the AVO ruled
that this behavior is acceptable.

" EA3004D and LA3004B require that errors be detected if pragma
INLINE is supported for functions. But because this pragma has no
effect when a function is called inside of a package specification
or inside a task body, one of the intended errors is not detected.
The AVO ruled that this is acceptable.

• EE2401D and EE2401G are inapplicable because USEERROR is raised
when the CREATE of an instantiation of DIRECTIO with unconstrained
array type is called.

CE3202A requires the association of a name with the standard output
file. This is not supported by the implementation and USEERROR is
raised during execution. This behavior is accepted by the AVO
pending a ruling by the language maintenance body.

• The folowing 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made with the approval of the
AVO, and are made in cases where legitimate implementation behavior
prevents the successful completion of an (otherwise) applicable test%

20

* ~ . VV* ~ ;f<.* *~***** ,

TEST INFORMATION

Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into sub-tests so
that all errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated by
the test (such as raising one exception instead of another).

Modifications were required for 29 tests.

The following 22 Class B tests were split because errors at one point
resulted in the compiler not detecting other errors in the test:

B24007A B24009A B25002A B26005A
B27005A B32202A B32202B B32202C
B33001A B36307A B37004A B74401F
B74401R B61012A B62001B B91004A
B95004A B95032A B95069A B95069B
BA11O1B2 BA1101B4

For the following tests, modification of the pass/fail criteria was needed.
The AVO ruled that they are passed for the reason indicated.

" C34007A,D,G,M,P and S (6 tests) require that attribute
'STORAGESIZE return a value that is greater than 1 when applied to
an object of an access type for which no specification of
collection size has been provided. This implementation gives the
message INCORRECT 'STORAGE SIZE.

" C4AO12B checks that 0.0 raised to a negative value raises
CONSTRAINTERROR. However NUMERICERROR is also an acceptable
exception to be raised. This implementation raises NUMERICERROR.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
AlsyCOMP_027, was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the AlsyCOMP_027 using ACVC Version 1.9 was conducted on-site by
a validation team from the AVF. The configuration consisted of a Macintosh
II operating under A/UX, Seed Release 3.3.1.

The contents of the tape were not loaded directly onto the host computer.
they were loaded on a VAX machine and transferred via a network to the
Macintosh II. This is the reason why prevalidation tests were used for the
validation. Those tests were loaded by Alsys from a magnetic tape

21

TEST INFORMATION

containing all tests provided by the AVF. Customization was done by Alsys.
All the tests were checked at prevalidation time.

Integrity of the validation tests was made by checking that no modification
of the tests occured after the time the prevalidation results were
transferred to a VAX for submission to the AVF on a magnetic tape. This
check was performed in checking the date of creation (or last modification)
of the test files was previous to the date that is on the prevaldiation
test results. After validation was performed a selection of 65 tests from
the ACVC were checked for integrity by the AVF.

Two identical Macintosh II were used for on-site testing. All class A, B C1
to C4 tests were compiled and linked on one Macintosh II, and all remaining
tests were compiled on the other Macintosh II. All executable tests were
run on the machine there were compiled and linked. Results were transferred
to a VAX from were they were put on a magnetic tape and stored at the AVF.
Analysis was done by comparison with the prevalidation results.

The compiler was tested using command scripts provided by ALSYS and
reviewed by the validation team. The compiler was tested using all default
switch / option settings except for the following:

Option L Switch Effect

REDUCTION=PARTIAL Some High Level optimization performed

OBJECT=PEEPHOLE Low Level optimization are performed

CALLS=INLINED The pragma INLINE are taken into account

*GENERIC=STUBS Code of generic instantiation is placed in
separate units (for tests AE2101A and AE2101F
only)

*GENERIC=INLINE Code of generic instantiation is placed

inline in the same unit (for tests other than
AE2101A and AE2101F).

Tests were compiled, linked, and executed (as approriate) using a single
host computer. Test output, compilation listings, and job logs were
captured on tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3.7.3 Test Site

The validation team arrived at La Celle Saint Cloud, France and departed
after testing was completed on 31 November, 1987.

If the option GENERIC=INLINE had been used for the tests AE21O1A and
AE21O1F there would have been a compiler capacity limitation. All tests
could have been compiled with the option GENERIC=STUBS but
GENERIC=INLINE was choosen as it increase the speed of compilation.

22

APPENDIX A

CONFORMANCE STATEMENT

ALSYS has submitted the following conformance statement concerning the
AlsyCOMP.027.

_-

23V

CONFORMANCE STATEMENT•0

DECLARATION OF CONFORMANCE

S

Compiler Implementor: ALSYS "A

Ada* Validation Facility:
AFNOR, Tour Europe, Cedex 7, F- 92080 Paris la D6fense

Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: AlsyCOMP 027, Version: Version 3.21

Host Architecture ISA: Macintosh II OS&VER #: A/UX, Seed Release 3.3.1 .

Target Architecture ISA: Macintosh II OS&VER #: A/UX, Seed Release 3.3.1

Implementor's declaration

I, the undersigned, representing ALSYS, have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler
listed in this declaration. I declare the ALSYS is the owner of record of
the Ada language compiler(s) listed above and, as such, is responsible for
maintaining said compilers(s) in conformance to ANSI-MIL-STD-1815A. All
certificates and registrations for Ada language compiler listed in this
declaration shall be made only in the owner's corporate name.

ALSYS "
Etienne Morel, Managing Director A

*Ada is a registred trademark of the United States Government
(Ada joint Program Office)

24 "S

CONFORMANCE STATEMENT

Owner's Declaration

I, the undersigned, representing ALSYS, take full responsability for
implementation and maintenance of the Ada compiler listed above, and agree
to the public disclosure of the final Validation Summary Report. I further
agree to continue to comply with the Ada trademark policy, as defined by
the Ada Joint Program Office. I declare that all of the Ada language
compilers listed, and their host/target performance are in compliance with
the Ada Language Standard ANSI/MIL-STD-1815A.

Xx

~~~~Date .. c /-1

ALSYS
Etienne Morel, Managing Director

'
P5%

'.£

°^

.0

*Ada is registered trademark of the United States GovernmentI
(Ada Joint Program Office).

25



APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of the
AlsyCOMP.027, Version 3.21, are described in the following sections which
discuss topics in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-1815A). Implementation-specific portions of the package
STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type SHORTINTEGER is range -128 .. 127;
type LONG INTEGER is range -2**31 .. 2**31-1;

type FLOAT is digits 6 range
-(2.0-2.0**(-23)) * 2.0**127 .. +(2.0-2.0**(-23)) * 2.0**127;

type LONG FLOAT is digits 15 range
-(2.0-2.0"*(-51)) * 2.0**1023 . t-(2.0-2.0**(-51)) * 2.0**1023;

type DURATION is delta 2.0**(-14) range -86_400.0 .. 86_400.0;
-- DURATION'SMALL = 2.0**(-14).

end STANDARD ;

p

26

_V V



A-).W7 A. '7 " -C,- Kr w -1-- Q, klz W VV rf WV x-rZN'

FA1 IM PLEMENTATION-DEPEN DENT PRAGMAS

Interfacing the language Ada with Other Languages

Programs written in Ada can interface with external subprograms written
in another language, by use of the INTERFACE pragma. The format of the
pragrna is

pragma INTERFACE ( language name , Ada subprogram name)

where the language-name can be any of ASSEMBLER, C, FORTRAN,
PASCAL

To allow the use of non Ada naming conventions, such as special character,
or case sensitivity, an implementation dependent pragma
INTERFACE__NAME has been introduced:

pragmia INTERFACE__NAME (Ada__subprogram_name. 'tame__string);

The pragma INTERFACE__NAME may be used anywhere in an Ada
program where INTERFACE is allowed (see [13.9]). INTERFACENAME

* must occur after the corresponding pragma INTERFACE and within the
same declarative part

* Conditional Compilation

Conditional compilation uses four rDragmas. Statements and declarations
which must only be compiled when a certain condition is satisfied are
bracketed by a pragma BEGIN__COMPILE and a pragma END__COMPILE.
These two pragmas take exactly one argument which is the n-ame of the
corresponding condition. This narihe can be any Ada identifier other than a
rcservej word.

When the statements or the declarations are to be compiled, the condition
must be satisfied. It is then said to be active; otherwise inactive.

The pragma NOW-_COMPILE activates a set of conditions. It takes a list of
* arguments which is the list of the conditions to activate. Any other

condition is deactivated.

The pragma STOP__COMPILE deactivates every active condition and takes
no argument.

Regardless of the set of active conditions, the Ada code placed between a
pragma BEGIN__COMPILE and a pragma END__COMPILE is. always
analyzed at a syntactic level by the compiler.

27



Pragma Indent S

This pragma is only used with the Alsys Reformatter; this tool offers the
functionalities of a pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter

pragma INDENT(OFF);

The Reformatter does not modify the source lines after the pragma.

pragma INDENT(ON);

The Reformatter resumes its action after the pragma.

Pragmas not implemented

The following pragmas are not implemented:
CONTROLLED
MEMORY SIZE
OPTIMIZE
PACK
SHARED
STORAGE UNIT
SYSTEMNAME S

F.2 IMPLEMENTATION-DEPENDENT ATTRIBUTES

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have
meaningful addresses. The following entities do not have meaningful
addresses and will therefore cause a compilation error if used as prefix to
ADDRESS:

(i) A constant that is implemented as an immediate value i.e., does
not have any space allocated for it.

(ii) A package specification that is not a library unit.
(iii) A package body that is not a library unit or a subunit.

There are four implementation-dependent attributes:

T'RECORD SIZE For a prefix T that denotes a record type. This
attribute refers to the record component introduced by the
compiler in a record to store the size of the record object.This
component exists for objects of a record type with defaulted
discriminants when the sizes of the record objects depend on the
values of the discriminants.

28

Il



T'VARIANT INDEX For a prefix T that denotes a record type. This
attribute refers to the record component introduced by the
compiler in a record to assist in the efficient implementation of
discriminant checks.This component exists for objects of a
record type with variant part.

C'ARRAY DESCRIPTOR For a prefix C that denotes a record
component of array type whuse component subtype definition
depends on discriminants.This attribute refers to the record
component introduced by the compiler in a record to store
information on subtypes of components which depend on
discriminants.

C'RECORD DESCRIPTOR For a prefix C that denotes a record
component of record type whose component subtype definition
depends on discriminants. This attribute rcfers to the record
component introduced by the compiler in a record to store
information on subtypes of components which depend on
discriminants. 1

F.3 THE PACKAGE SYSTEM

package SYSTEM is

-- Standard Ada definitions

type NAME is ( UNIX)
SYSTEM NAME constant NAME UNIX
STORAGE UNIT constant : 8 ;
MEMORY__SIZE : constant : 2**32;
MIN INT : constant -(2*31)
MAX__INT : constant 2**31-1
MAXDIGITS constant 15
MAX MANTISSA : constant :, 31;
FINE-DELTA : constant 2#1.0#e-31
TICK : constant 1.0 ;

type ADDRESS is private ;

NULL ADDRESS constant ADDRESS"

subtype PRIORITY is INTEGER range ..127 ;

-- Address arithmetic

function TO LONG INTEGER (LEFT: ADDRESS)
return LONG INTEGER ;

function TO ADDRESS (LEFT: LONGINTEGER)
return "ADDRESS ; S

29



F.4 RESTRICTIONS ON REPRESENTATION CLAUSES

The facilities covered in [13] are provided, except for the following
features:

* There is no bit implementation for any of the representation
clauses.

* Address clauses are not implemented.
* Change of representation for RECORD type is not implemented.
* Machine code insertions are not implemented.
* For the length clause:

Size specification: T'SIZE is not implemented
for types declared in a generic unit.
Specification of storage for a task activation:
T'STORAGESIZE is not implemented when T
is a task.
Specification of small for a fixed point type:
T'SMALL is restricted to a power of 2, and the
absolute value of the exponent must be less than
31.

* The enumeration clause is not allowed if there is a range
constraint on the parent subtype.

* The record clause is not allowed for a derived record type.

F.5 IMPLEMENTATION-GENERATED NAMES

There are four implementation-generated names: .4

RECORDSIZE This is an implementation-specific record
component. The component is introduced by the compiler in a
record to store the size of the record object.

VARIANTINDEX This is an implementation-specific record
component. The component is introduced by the compiler in a
record to assist in the efficient implementation of discriminant
checks.

ARRAYDESCRIPTOR and RECORDDESCRIPTOR Array and
record descriptors are internal components which are used by
the compiler to store information on subtypes of record
components which depend upon discriminants.
Array descriptors are used for record components of array types,
whereas record descriptors are used for record components of
record types.

F.6 ADDRESS CLAUSES

Address clauses [13.5] are not implemented in this version of Alsys Ada.

30



t.

function "+"(LEFT LONG _INTEGER ; RIGHT: ADDRESS)
return ADDRESS;

function "+" (LEFT: ADDRESS; RIGHT: LONGINTEGER)
return ADDRESS;

function "-" (LEFT: ADDRESS ; RIGHT: ADDRESS)
return LONG INTEGER;

function "-" (LEFT: ADDRESS ; RIGHT: LONGINTEGER)
return ADDRESS;

function "mod" (LEFT: ADDRESS; RIGHT: POSITIVE)
return NATURAL;

function "<" (LEFT: ADDRESS ; RIGHT: ADDRESS)
return BOOLEAN ;

function "<=" (LEFT: ADDRESS; RIGHT: ADDRESS)
return BOOLEAN ; .

function ">" (LEFT: ADDRESS; RIGHT : ADDRESS)
return BOOLEAN ;

function ">=" (LEFT : ADDRESS ; RIGHT : ADDRESS)
return BOOLEAN;

function ISNULL (LEFT : ADDRESS) return BOOLEAN;
function WORD ALIGNED (LEFT : ADDRESS) return BOOLEAN;
function ROUND (LEFT : ADDRESS) return ADDRESS ;

-- Return the given address rounded to the next lower even
value

procedure COPY (FROM: ADDRESS; TO : ADDRESS;
SIZE : NATURAL);
-- Copy SIZE storage units. The result is undcfined if the two
areas overlap.

-- Direct memory access

generic
type ELEMENTTYPE is private

function FETCH (FROM: ADDRESS) return ELEMENTTYPE;
-- Return the bit pattern stored at address FROM, as a value of the
-- specified ELEMENT _TYPE. This function is not implemented
-- for unconstrained array types.

generic
type ELEMENT TYPE is private;

procedure STORE (INTO: ADDRESS ; OBJECT: ELEMENTTYPE);
Store the bit pattern representing the value of OBJECT, at

-- address INTO. This function is not implemented for
-- unconstrained array types.
private
-- private part of the compiler

end SYSTEM

31



F.7 UNCHECKED CONVERSIONS

Unconstrained array are not allowed as target types.Unconstrained record
types without defaulted discriminants are not allowed as target types. If the
source and the target types are each scalar or access,the sizes of the objects
of the source and target types must be equal. If a composite type is used
either as source type or as target type this restriction on the size does not
apply. If the source and the target types are both of scalar or access types
or if they are each of composite types,the effect of the function is to
return the operand. In other cases the effect of unchecked conversion can
be considered as a copy:

-- if an unchecked conversion is achieved of a scalar or access source
type to a composite target type, the result of the function is a
copy of the source operand: the result has the size of the source.

-- if an unchecked conversion is achieved of a composite source type to
a scalar or access target type, the result of the function is a copy
of the source operand: the result has the size of the target.

F.8 INPUT-OUTPUT CHARACTERISTICS

The FORM parameter to both the CREATE and OPEN procedures in Ada
specifies the characteristics of the external file involved.

The FORM parameter is a string, formed from a list of attributes, with
attributes separated by commas (,). The string is not case sensitive (so that,
for example, HERE and here are treated alike). The attributes specify: File
protection, File sharing, Record size, Record unit, Buffering, Appending,
Blocking, Terminal input

The general form of any attribute is a keyword followed by => and then
a qualifier. The qualifier may sometimes be omitted. The format for an
attribute specifier is thus either of

KEYWORD

KEYWORD => QUALIFIER(S)

Pp



-1 -. ,,- W WuWw.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

SBIGID1 'X234567890' & (24 * '1234567890')
Identifier the size of the maximun & '12341'
input line length with varying
last character.

$BIGID2 'X234567890' & (24 * '1234567890')
Identifier the size of the maximun & '12342'
input line length with varying
last character.

$BIGID3 'X234567890' & (11 * '1234567890')
Identifier the size of the maximum & '12345xx3xx12345'
input line length with varying & (12 * '1234567890')
middle character.

$BIG_- ID4 'X234567890' & (11 * '1234567890')
Identifier the size of the maximum & '12345xx4xx12345'
input line length with varying & (12 * '1234567890')
middle character.

SBIGINT..LIT (252 * '0') & '298'
An integer literal of value 298
with enough leading zeroes so that
it is the size of the maximum line
length.

SBIG_ REALLIT (250 * '0') & '690. '
A universal real literal of value
690.0 with enough leading zeroes
to be the size of the maximum line
length.

33



TEST PARAMETERS

Name and Meaning Value

$BIG_- STRING1 'X234567890' & (11 * '1234567890')
A string literal which when
catenated with BIGSTRING2 yields
the image of BIGIDI.

$BIG_- STRING2 (13 * '1234567890') & '12341'
A string literal which when
catenated with the end of
BIGSTRING1 yields the image of
BIGID1.

SBLANKS (235 *
A sequence of blanks twenty
characters less than the size of
the maximum line length.

$COUNTLAST 2_147_483_647
A universal integer literal whose
value is TEXTIO.COUNT'LAST.

SFIELDLAST 255
A universal integer literal
whose value is TEXT_IO.FIELD'LAST.

$FILE__NAMEWITH__BADCHARS /"
An external file name that either
contains invalid characters or is
too long.

SFILENAMEWITHWILDCARDCHAR
An external file name that either
contains a wild card character or
is too long.

$GREATERTHANDURATION 100000.0
A universal real literal that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in the
range of DURATION.

$GREATERTHANDURATIONBASELAST 100_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNALFILE..NAMEI /-/*/fl
An external file name which
contains invalid .characters.

$ILLEGALEXTERNALFILENAME2 /*/-/f2
An external file name which is too
long (or illegal).

34



TEST PARAMETERS

Name and Meaning Value

$INTEGER__FIRST -32768
A universal integer literal whose
value is INTEGER'FIRST.

$INTEGERLAST 32767
A universal integer literal whose
value is INTEGER'LAST.

$INTEGERLAST__PLUS_1 32768
A universal integer literal whose
value is INTEGER'LAST + 1.

SLESSTHANDURATION -100_000.0
A universal real literal that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in the
range of DURATION.

SLESSTHANDURATIONBASEFIRST -100_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SMAXDIGITS 15
Maximum digits supported for
floating-point types.

SMAX IN LEN 255
Maximum input line length
permitted by the implementation.

SMAXINT 2_147_483_647
A universal integer literal
whose value is SYSTEM.MAXINT.

SMAXINTPLUS_1 2_147_483_648
A universal integer literal
whose value is SYSTEM.MAXINT + 1.

SMAXLENINT_BASEDLITERAL '2#' & (250 * '0') & '111#'
A universal integer based literal
whose value is 2#11# with enough
leading zeroes in the mantissa to
be MAXINLEN long.

SMAXLENREALBASEDLITERAL '16:' & (248 * '0') & 'F.E:'
A universal real based literal
whose value is 16:F.E: with enough
leading zeroes in the mantissa to
be MAXINLEN long.

35



TEST PARAMETERS

Name and Meaning Value

$MAXSTRINGLITERAL (25 * '1234567890') & '123'
A string literal of size
MAXIN LEN, including the quote
characters.

$MININT -2_147_483_648
A universal integer literal
whose value is SYSTEM.MININT.

SNAME NOSUCHTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONG_FLOAT, or LONGINTEGER.

SNEGBASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit falls in
the sign bit position of the
representation for SYSTEM.MAXINT.

0

36



I

APPENDIX D R

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
ADA Standard. The following 25 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form "AI-
ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and
the matter will be reviewed by the ALMP.

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINTERROR.

C35502P: Equality operators in lines 62 & 69 should be inequality
operators.

A35902C: Line 17's assignment of the nominal upper bound of a fixed-
point type to an object of that type raises
CONSTRAINTERROP, for that 7alue lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28
wrongly raises CONSTRAINTERROR, because its upper bound
exceeds that of the type.

C35A03E, These tests assume that attribute 'MANTISSA returns 0 when
& R applied to a fixed-point type with a null range, but the Ada

Standard doesn't support this assumption.
a-

C37213H: The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises CONSTRAINTERROR. I

C37115C, Various discriminant constraints are wrongly expected to be
E, G, H: incompatible with type CONS. o

C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINT-ERROR.

37

- -- - - - - - -- - - - - - - - -- -----



C41402A: 'STORAGESIZE is wrongly applied to an object of an access
type.

C45614C: REPORT.INDENTINT has an argument of the wrong type
(LONG_INTEGER).

A74106C, A bound specified in a fixed-point subtype declaration lies
C85018B, outside of that calculated for the base type, raising
C87BO4B, CONSTRAINTERROR. Errors of this sort occur re lines 37 &
CC1311B: 59, 142 & 143, 16 & 48, and 252 & 253 of the four tests,

respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be incorrect; they
are coorect.

AD1AOIA: The declaration of subtype INT3 raises CONSTRAINTERROR for
implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 & 117 contain the wrong
values.

CE3208A: This test expects thar an attempt to open the default output
file (after it was closed) with mode INFILE raises
NAMEERROR or USEERROR; by Commentary AI-00048. MODEERROR 5
should be raised.

.38

..

38~

p.


